Abstracts of Forthcoming Articles

Abstract

Dimorphisme du Disulfure de Lanthane LaS . Simone Benazeth, Micheline Guittard, and $^{\text {. }}$ Jean Flahaut, Laboratoire de Chimie Minérale Structurale, Faculté des Sciences Pharmaceutiques et Biologiques de Paris V, 4, avenue de l'Observatoire, 75270 Paris Cédex 06, France. The stoichiometric lanthanum disulfide LaS_{2} presents a reversible phase transition at about $750^{\circ} \mathrm{C}$. The α low-temperature form is monoclinic with the LaSe_{2} type of structure. All the crystals are twinned with the same twin law (100). The cell parameters are $a=8.18 ; b=8.13 ; c=4.03 \AA ; \gamma=90^{\circ}$, space group $P 2_{1} / a$. The β high-temperature form has the orthorhombic structure previously described with the parameters $a=$ $8.13 ; b=16.34 ; c=4.14 \AA$, space group Pnma. The two structures are compared.

The Structure of Quartz at 25 and $590^{\circ} \mathrm{C}$ Determined by Neutron Diffraction. A. F. Wright and M. S. Lehmann, Institut Laue Langevin, 156X, 38042 Grenoble Cédex, France. Analysis of singlecrystal data on the α to β transformation in quartz, which takes place at $573^{\circ} \mathrm{C}$, showed that the model which, until now, has best agreed with available X-ray data does not hold for the neutron data. In the earlier model both oxygen and silicon atoms move to special positions ($6 j$ and $3 c$ in the space group $P 6_{2} 22$). The new data for β-quartz were best explained by assuming a disorder for the oxygen atom around the $6 j$ position, and in order to keep regular SiO_{4} tetrahedra, a corresponding small disorder in the silicon atom is assumed.

Phase Relations and Exsolution Phenomena in the System NiO-TiO ${ }_{2}$. Thomas Armbruster, Institut für Mineralogie der Ruhr-Universität, D-4630, Bochum, West Germany. The phase relations in the system $\mathrm{NiO}-\mathrm{TiO}_{2}$ were studied between 1000 and $1600^{\circ} \mathrm{C}$ using quenched powder specimens, DTA runs, and single-crystal diffusion couples. Quenching experiments establish the stable phases TiO_{2} (rutile), NiTiO_{3}, an ilmenite structure type, $\mathrm{Ni}_{21+x}, \mathrm{Ti}_{1-. r} \mathrm{O}_{4}(x>0.16)$, a cation-excess spinel, and $\mathrm{Ni}_{1-2 . r} \mathrm{Ti}_{r} \mathrm{O}$ (rock salt structure type). DTA runs reveal the existence of an additional nonstoichiometric ilmenite phase $\mathrm{Ni}_{1-2 x} \mathrm{Ti}_{1+x} \mathrm{O}_{3}(x<0.03)$ above $1260^{\circ} \mathrm{C}$. In quenched ($1500^{\circ} \mathrm{C}, 1450{ }^{\circ} \mathrm{C}$) or slowly cooled single-crystal diffusion couples, mutual oriented exsolutions occur in the rutile guest crystal and in the ilmenite diffusion zone. Orientation relations are:

$$
\begin{array}{cl}
\{010\}_{\text {rutile }}| |\{0001\}_{\text {rlmenite (exsolutions) }} ; & \langle 101\rangle_{\text {rutle }}| |\langle 110\rangle_{\text {illmenite }} \text {, } \\
\{0001\}_{\text {ilmenite }}| |\{010\}_{\text {rutile (evsolutions) }} ; & \langle 10\rangle_{\text {ilmenite }}| |\langle 101\rangle_{\text {rutile. }} \text {. }
\end{array}
$$

The cation-excess spinel decomposes below $1375^{\circ} \mathrm{C}$ into oriented intergrowth of NiTiO_{3} (ilmenite) and NiO :

$$
\{111\}_{\mathrm{XiO}}| |\{0001\}_{\mathrm{XiTiO}_{\mathrm{i}} ;} ; \quad\langle 110\rangle_{\mathrm{NiO}}| |\langle 110\rangle_{\mathrm{NiTiO}} .
$$

Mise en Evidence de l'Entité $\mathrm{Sb}_{2} \mathrm{~F}_{4} \mathrm{O}$ dans un Compose d'Addition Moléculaire avec l'Urée: Etude Structurale de $\left(\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}\right)_{2}, \mathrm{Sb}_{2} \mathrm{~F}_{4} \mathrm{O}$. M. Bourgault, R. Fourcade, and G. Mascherpa, Laboratoire de Chimie Minérale D, Université des Sciences et Techniques du Languedoc, Place Eugène Bataillon, 34060 Montpellier Cédex, France. The X-ray structure determination of $\left|\left(\mathrm{NH}_{2}\right)_{2} \mathrm{CO}\right|_{2} \cdot \mathrm{Sb}_{2} \mathrm{~F}_{4} \mathrm{O}$ shows the existence of linked units urea- $\mathrm{Sb}_{2} \mathrm{~F}_{4} \mathrm{O}$ which show the $\mathrm{Sb}_{2} \mathrm{~F}_{4} \mathrm{O}$ entity, not yet known. Crystal structure was solved with a single-crystal X-ray diffraction study (the final R value is 0.046). The $\mathrm{Sb}_{2} \mathrm{~F}_{4} \mathrm{O}$ unit is composed of a symmetric and short $\mathrm{Sb}-\mathrm{O}-\mathrm{Sb}$ bridge, and of four fluorine atoms, two being bonded to each antimony atom and situated in "trans" position relative to the $\mathrm{Sb}-\mathrm{O}-\mathrm{Sb}$ bridge. The bridge bond strength is assigned to a $p \pi d \pi$ overlap.

The Crystal and Molecular Structure of tris (ortho-Aminobenzoato)aquoyttrium(III). $Y\left(\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{COO}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{O}$. Sharon M. Boudreau and Helmut M. Haendler, Department of Chemistry, University of New Hampshire, Durham, New Hampshire 03824. tris(ortho-Aminobenzoato)aquoyttrium(III), $\mathrm{Y}\left(\mathrm{H}_{2} \mathrm{NC}_{6} \mathrm{H}_{4} \mathrm{COO}\right)_{3} \cdot \mathrm{H}_{2} \mathrm{O}$, crystallizes in the monoclinic space group, $C 2 / c$, with eight molecules in a unit cell of dimensions: $a=30.89(1) \AA, b=9.09(1) \AA, c=14.85(1) \AA$, and $\beta=$

